4,542 research outputs found

    Adsorption and catalytic activity of glucose oxidase accumulated on OTCE upon the application of external potential

    Get PDF
    This article describes the adsorption of glucose oxidase (GOx) onto optically transparent carbon electrodes (OTCE) under the effect of applied potential and the analysis of the enzymatic activity of the resulting GOx/OTCE substrates. In order to avoid electrochemical interferences with the enzyme redox center, control electrochemical experiments were performed using flavin adenine dinucleotide (FAD) and GOx/OTCE substrates. Then, the enzyme adsorption experiments were carried out as a function of the potential applied (ranged from the open circuit potential to +950. mV), the pH solution, the concentration of enzyme, and the ionic strength on the environment. The experimental results demonstrated that an increase in the adsorbed amount of GOx on the OTCE can be achieved when the potential was applied. Although the increase in the adsorbed amount was examined as a function of the potential, a maximum enzymatic activity was observed in the GOx/OTCE substrate achieved at +800. mV. These experiments suggest that although an increase in the amount of enzyme adsorbed can be obtained by the application of an external potential to the electrode, the magnitude of such potential can produce detrimental effects in the conformation of the adsorbed protein and should be carefully considered. As such, the article describes a simple and rational approach to increase the amount of enzyme adsorbed on a surface and can be applied to improve the sensitivity of a variety of biosensors.Fil: Benavidez, Tomás Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of Texas; Estados UnidosFil: Torrente, Daniel. University of Texas; Estados UnidosFil: Marucho, Marcelo. University of Texas; Estados UnidosFil: Garcia, Carlos D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of Texas; Estados Unido

    Combining alginate beads with methylene to create a biosensor to assess the quality of milk

    Get PDF
    https://tigerprints.clemson.edu/csrp/1017/thumbnail.jp

    Gapless Hamiltonians for the toric code using the PEPS formalism

    Get PDF
    We study Hamiltonians which have Kitaev's toric code as a ground state, and show how to construct a Hamiltonian which shares the ground space of the toric code, but which has gapless excitations with a continuous spectrum in the thermodynamic limit. Our construction is based on the framework of Projected Entangled Pair States (PEPS), and can be applied to a large class of two-dimensional systems to obtain gapless "uncle Hamiltonians".Comment: 8 pages, 2 figure

    Adsorption of proteins to thin-films of PDMS and its effect on the adhesion of human endothelial cells

    Get PDF
    This paper describes a simple and inexpensive procedure to produce thin-films of poly(dimethylsiloxane). Such films were characterized by a variety of techniques (ellipsometry, nuclear magnetic resonance, atomic force microscopy, and goniometry) and used to investigate the adsorption kinetics of three model proteins (fibrinogen, collagen type-I, and bovine serum albumin) under different conditions. The information collected from the protein adsorption studies was then used to investigate the adhesion of human dermal microvascular endothelial cells. The results of these studies suggest that these films can be used to model the surface properties of microdevices fabricated with commercial PDMS. Moreover, the paper provides guidelines to efficiently attach cells in BioMEMS devices.Fil: Chumbimuni Torres, Karin Y.. The University of Texas at San Antonio; Estados UnidosFil: Coronado, Ramon E.. The University of Texas at San Antonio; Estados UnidosFil: Mfuh, Adelphe M.. The University of Texas at San Antonio; Estados UnidosFil: Castro Guerrero, Carlos. The University of Texas at San Antonio; Estados UnidosFil: Silva, MarĂ­a Fernanda. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de BiologĂ­a AgrĂ­cola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de BiologĂ­a AgrĂ­cola de Mendoza; ArgentinaFil: Negrete, George R.. The University of Texas at San Antonio; Estados UnidosFil: Bizios, Rena. The University of Texas at San Antonio; Estados UnidosFil: Garcia, Carlos D.. The University of Texas at San Antonio; Estados Unido

    Big Data for a Deep Problem: Exploring Natural Deep Eutectic Solvent (NADES) Properties through RDKIT and Data Analytics

    Get PDF
    https://tigerprints.clemson.edu/csrp/1014/thumbnail.jp

    Thermal Degradation of Chemical Warfare Agents Utilizing Pyrolyzed Cotton Balls

    Get PDF
    Since the Chemical Warfare Convention (CWC) Treaty was established in 1997, it has been prohibited for countries to stockpile, produce, or use chemical warfare agents (CWAs). However, it can be assumed that not every country or group is in accordance with these regulations, and therefore a method to deactivate and destroy these agents is necessary for international security. Current methods for destroying chemical warfare agents have predominantly relied up hydrolysis, high pressure peroxides, or oxidation reactions utilizing bleaching agents. While these methods are effective, they require a large quantity of decontamination agents relative to the amount of CWA present and can produce secondary hazardous byproducts. By utilizing pyrolyzed cotton balls as a vessel for igniting the agents with napalm, it is possible to quickly and effectively destroy a wide variety of chemical warfare agents with limited residue or byproducts. This presents a simple, low cost, and effective method to rapidly decompose large quantities of CWAs with limited waste or cross contamination

    Using Alginate Beads Modified with Graphite as an Effective Electrode

    Get PDF
    https://tigerprints.clemson.edu/csrp/1007/thumbnail.jp

    Microfluidic Devices for Studying Biomolecular Interactions

    Get PDF
    Microfluidic devices for monitoring biomolecular interactions have been invented. These devices are basically highly miniaturized liquid-chromatography columns. They are intended to be prototypes of miniature analytical devices of the laboratory on a chip type that could be fabricated rapidly and inexpensively and that, because of their small sizes, would yield analytical results from very small amounts of expensive analytes (typically, proteins). Other advantages to be gained by this scaling down of liquid-chromatography columns may include increases in resolution and speed, decreases in the consumption of reagents, and the possibility of performing multiple simultaneous and highly integrated analyses by use of multiple devices of this type, each possibly containing multiple parallel analytical microchannels. The principle of operation is the same as that of a macroscopic liquid-chromatography column: The column is a channel packed with particles, upon which are immobilized molecules of the protein of interest (or one of the proteins of interest if there are more than one). Starting at a known time, a solution or suspension containing molecules of the protein or other substance of interest is pumped into the channel at its inlet. The liquid emerging from the outlet of the channel is monitored to detect the molecules of the dissolved or suspended substance(s). The time that it takes these molecules to flow from the inlet to the outlet is a measure of the degree of interaction between the immobilized and the dissolved or suspended molecules. Depending on the precise natures of the molecules, this measure can be used for diverse purposes: examples include screening for solution conditions that favor crystallization of proteins, screening for interactions between drugs and proteins, and determining the functions of biomolecules

    Accuracy of the Justy II apex locator in determining working length in simulated horizontal and vertical fractures

    Get PDF
    Aim: to study the effectiveness of an electronic apex locator (Justy II) in locating simulated horizontal and vertical fractures in single roots. Methods: an electronic apex locator (EAL) (Justy II, Yoshida Dentcraft, Tokyo, Japan) was used to measure the distance within the canal of horizontal (n=31) and vertical (n=31) fractures, created with a disk in single-rooted teeth. Accuracy of the EAL was evaluated by comparing the measurements with those made using a size 10 file. Data were analyzed with the non-parametric Passing and Bablok method. Results: for simulated horizontal fractures the EAL measured exactly the same length as a size 10 file, without constant or proportional errors. In vertical simulated fractures the EAL measured (on average) with a constant error of 7.5 mm shorter than the size 10 file; the difference had a wide confidence interval (–72.3 to 2.6 mm). Conclusion: in this laboratory study, the Justy II EAL was able to determine accurately the position of simulated horizontal fractures but was unreliable when measuring simulated vertical fractures

    Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars

    Get PDF
    Convective line asymmetries in the optical spectrum of two metal-poor stars, Gmb1830 and HD140283, are compared to those observed for solar metallicity stars. The line bisectors of the most metal-poor star, the subgiant HD140283, show a significantly larger velocity span that the expectations for a solar-metallicity star of the same spectral type and luminosity class. The enhanced line asymmetries are interpreted as the signature of the lower metal content, and therefore opacity, in the convective photospheric patterns. These findings point out the importance of three-dimensional convective velocity fields in the interpretation of the observed line asymmetries in metal-poor stars, and in particular, urge for caution when deriving isotopic ratios from observed line shapes and shifts using one-dimensional model atmospheres. The mean line bisector of the photospheric atomic lines is compared with those measured for the strong Mg I b1 and b2 features. The upper part of the bisectors are similar, and assuming they overlap, the bottom end of the stronger lines, which are formed higher in the atmosphere, goes much further to the red. This is in agreement with the expected decreasing of the convective blue-shifts in upper atmospheric layers, and compatible with the high velocity redshifts observed in the chromosphere, transition region, and corona of late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in The Astrophysical Journa
    • …
    corecore